

Inoving

Vibration fork level switches type INOVING R-400 /

General description

KFG Level has revamped the popular Inoving range of Vibrating Forks for an even higher performance and for a greater flexibility of use. The reengineered extreme short fork section enables applications in tight spaces and also on pipes. The 6 times increased excitation frequency will ensure interface-free operation if used on vibrating structures.
Media: The Inoving can be used in almost all media like explosive and non-explosive liquids, aggressive liquids (acids, solvents), high viscosity liquids; unaffected by foam, turbulence, gas content.
It can also be used on light and medium density free flowing granulates and powders.
Application: The Inoving covers a large variety of level detection applications and more... ; high / low fail safe limit switch, overfill or dry run protection, pump controls, dry / wet indication in pipes.

Highlights of the Inoving:

- Fit and forget device; simple installation -no maintenance.
- Switching performance does not depend on the change of liquid conductivity, dielectric constant, viscosity, pressure and temperature.
- Probe extension up to 3 m length.
- Flange or slinding sleeve options.
- ECTFE (HALAR®) coated versions for aggressive or sticky media.
- Hygienic versions with varius process connections and 0,5 micron fine polishing.
- high or low fail-safe mode, as well as the medium density is field programmable on most models.
- opertion test of installed units can be performed with the help of a test magnet on some of the models.

General

NOVING RF-400 or RF-500

is the "Standard" version with paint coated, robust Aluminium or plastic housing; visible, large bicolour output state indication LED; 1 or 2 power relay output and universal AC/DC power supply.

INOVING RC-400 is the
"Mini" version incorporating a stainless steel tube housing, visible bicolour output state indication LED, and 2 -wire AC, 2 -wire DC or 3-wire PNP/NPN transistor output.

INOSWITCH JDT-131 Ex the CENELEC approved 2wire RC-400 Ex vibration forks requires an intrinsically safe remote switching unit containing the intrinsically safe barrier and a potential free output.

APPLICATION AND INSTALLATION

Application on liquids

In applications on liquids with

- low viscosity (without risk of remaining material on the fork-tines) any of the mounting shown beside is possible,
- high viscosity (due to risk of remaining material on the fork-tines) only vertical (top) mounting can be suggested. In applications with side mounting take care of the positioning mark.

Vibration fork level switches type INOVING R-400 / R-500

APPLICATION AND INSTALLATION

Application on liquids

In applications on liquids with

- low viscosity (without risk of remaining material on the fork-tines) any of the mounting shown beside is possible,
- high viscosity (due to risk of remaining material on the fork-tines) only vertical (top) mounting can be suggested.

In applications with side mounting take care of the positioning mark.

Use always HIGH density setting ($\rho \geq 0.7 \mathrm{~kg} / \mathrm{dm} 3$) for application on liquids!

Installation on liquids

$X>5 \mathbf{m m}$

For dry/w et detection, fork-tines must be parallel to the direction of flo

Positioning and switching point

For positioning the fork-tines, use the marking on the hexagon neck.

Use a TEFLON (PTFE) tape to aid the positioning of the fork-tines. If the fork-tine position is irrelevant, use the sealing ring provided.

Values are for water at $25^{\circ} \mathrm{C}$
Liquids: switching point as well as the switch differential slightly depends on liquid density and mounting position.
Solids: switching point as well as the switch differential slightly depends on material quality and mounting position.

Electrical connections

«M IN।» models in stainless steel housing
 \Rightarrow 3-w ire DC versions with PNP/NPN transistor output, to drive relays, PLC-s

Connector output version $R \square$ $-4 \square$ - 3

Top view with removed connector:

All models expect the «SHORTY»

«M» - Operation mode
«H» - High - level limit switch
«L» - Low - level limit switch
«D» - Density
«H»- High
«L» - Low

The «SHORTY» models for liquid only

«M»- Operation mode
«H» - High - level limit switch
«L» - Low - level limit switch

Density setting

HIGH density Liquids: $\rho \geq 0,7 \mathrm{~kg} / \mathrm{dm}^{3}$
Solids: $\rho \geq 0,5 \mathrm{~kg} / \mathrm{dm}^{3}$
LOW density Solids. $\rho<0,5 \mathrm{~kg} / \mathrm{dm}^{3}$

Integral cable output version $\quad R \square \square-4 \square \square-4$
PNP mode
HIGH density
(liquids $\rho \geq 0,7 \mathrm{~kg} / \mathrm{dm}^{3}$, Solids $\rho \geq 0,5 \mathrm{~kg} / \mathrm{dm}^{3}$)

PNP mode

LOW density
(Solids $\rho<0,5 \mathrm{~kg} / \mathrm{dm}^{3}$)

NPN mode
HIGH density
(liquids $\rho \geq 0,7 \mathrm{~kg} / \mathrm{dm}^{3}$, Solids $\rho \geq 0,5 \mathrm{~kg} / \mathrm{dm}^{3}$)

NPN mode
LOW density
(Solids $\rho<0,5 \mathrm{~kg} / \mathrm{dm}^{3}$)

Vibration fork level switches type INOVING R-400 / R-500

\Rightarrow 2-wire AC versions to drive relays, PCL-s
Do not power up 2 wire AC devices without a load connected in series with the unit and without grounding it!

Connector output version
$\mathbf{R} \square \square \mathbf{- 4} \square \square \mathbf{- 1}$

Integral cable output version $\quad \mathbf{R} \square \square \mathbf{- 4} \square \square \mathbf{- 2}$

Please note the 2-w ire AC versions can not be programmed for medium density. The units are manufactured with fixed HIGH Density setting.

\Rightarrow 2-wire DC versions to drive controllers with current sensitive input

Two-wire loop powered devices, operate according to the DC diagram beside.

Please note, that the 2-wire DC versions can not be programmed for HIGH or LOW FAILSAFE on the device itself.

Operating diagram

Fork		Status LED	Output
Immersed		RED	$14 \pm 1 \mathrm{~mA}$
Free	号谓	GREEN	$9 \pm 1 \mathrm{~mA}$

Connector output version
$\mathbf{R} \square \square \mathbf{- 4} \square \square \mathbf{- 6}$

Integral cable output version $\quad \mathbf{R} \square \square \mathbf{- 4} \square \square \mathbf{- 7}$

\Rightarrow Ex versoins

An intrinsically safe, CENELEC Ex approved system, consists of the following:
Intrisically safe vibration fork Intrinsically safe remote «INOVING R-400-8,9» switching unit
EEx ia IIC T4...T6 «INOVING JDT-131 Ex» [EEx ia] IIC

The Ex level limit switch is powered by the remote switching unit JDT-131 Ex. The remote switching unit receives the switch signal through a current loop. The remote switching unit provides for a potentialfree power relay output.
High or low-fail safe mode is programmable by switch on the remote switching unit, while switching sensitivity is programmed via changing the polarity of the 2-wire output of the level sensor
Temperature classification according to the Ex certificate:

	T6	T5	T4
${ }^{T}$ Ambient $\left[{ }^{\circ} \mathrm{C}\right]$	60	60	60
${ }^{\mathrm{T}}$ Medium $\left[{ }^{\circ} \mathrm{C}\right]$	80	95	130

Vibration fork level switches type INOVING R-400 / R-500

Integral cable output version
$\mathbf{R} \square \square \mathbf{- 4} \square \square \mathbf{- 4}$

«STANDARD» models in Alu cast/plastic housing
\Rightarrow Relay output versions
$\mathbf{R} \square \square \mathbf{- 4} \square \square \mathbf{- 0}$
$\mathbf{R} \square \square \mathbf{- 4} \square \square \mathbf{- A}$
$\mathbf{R} \square \square \mathbf{- 5} \square \square \mathbf{- 0}$
$\mathbf{R} \square \square-5 \square \square$ - A

Top view with removed housing cover:
Density setting:
HIGH density Liquids: $\rho \geq 0,7 \mathrm{~kg} / \mathrm{dm}^{3}$
Solids: $\rho \geq 0,5 \mathrm{~kg} / \mathrm{dm}^{3}$
LOW density Solids. $\rho<0,5 \mathrm{~kg} / \mathrm{dm}^{3}$

Use $8 \ldots 15 \mathrm{~mm}$ outer diameter circular cables, and tighten cable glands as well as housing cover after installation, to ensure an IP 65 protection.

Technical Data

GENERAL SPECIFICATION

Model
Probe material
Process connection material
Probe extension material
Maximum pressure

Medium temperature range
Ambient temperature range

Sealing material
Probe length
Medium

density Liquids	$\geq 0.7 \mathrm{~kg} / \mathrm{dm}^{3}$
Solids	$\geq 0.05 \mathrm{~kg} / \mathrm{dm}^{3}$
Liquid viscosity	$\leq 10000 \mathrm{~mm} 2 / \mathrm{s}$ (cSt) (see
	Derating diagrams)
Response time	
When immersed	0.5 sec
When free	$\leq 1 \mathrm{sec}$ at high density setting
	$\left(\rho \geq 0.5 \mathrm{~kg} / \mathrm{dm}^{3}\right)$
	≤ 2 sec at low density setting
	$\left(\rho<0.5 \mathrm{~kg} / \mathrm{dm}^{3}\right)$ (see
Output mode indicator	Derating diagrams) Bi-colour Staus LED on outside of housing

Vibration fork level switches type INOVING R-400 / R-500

Model
Probe material
Process connection
material
Probe extension mater
Maximum pressure
Medium temperature

range	-PP flange: $-20^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$
	ECTFE coated st.st flange: $-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C} *$
Ambient temperature range	
	Standard models in Alu-
	cast/plastic housing with relay
	put: -30∞ C to +70
	" M ini" models in stainless
	steel housing with electronic
	output: -40∞ to $+70 \infty$ C
	Ex version: $-20^{\circ} \mathrm{C}$ to $+60{ }^{\circ} \mathrm{C}$
Sealing material	VITON
Probe length	69 to 3000 mm
M edium	
density Liquids	$\geq 0.7 \mathrm{~kg} / \mathrm{dm}^{3}$
Solids	$\geq 0.05 \mathrm{~kg} / \mathrm{dm}^{3}$
Liquid viscosity	$\leq 10000 \mathrm{~mm} 2 / \mathrm{s}$ (cSt) (see
	Derating diagrams)

Response time
When immersed 0.5 sec
When free $\quad>1 \mathrm{sec}$ at high density setting ($\rho \geq 0.5 \mathrm{~kg} / \mathrm{dm}^{3}$)
$\leq 2 \mathrm{sec}$ at low density setting ($\rho<0.5 \mathrm{~kg} / \mathrm{dm}^{3}$) (see Derating diagrams)

Output mode indicator
ECTFE (HALAR) coated
1.4404 (X 2 CrNiMo 17132);

ECTFE coated

Polypropylene flange
(max.: 6 bar)
ECTFE coated st.st. flange.
PFA coated st.st.
PP flange: 6 bar, - St.st. flange: 40 bar, for derating see Derating diagrams
-PP flange: $-20^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$ ECTFE coated st.st flange:
$-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ *

Standard models in Alucast/plastic housing with relay output: -30∞ C to $+70 \infty$ C;
" Mini" models in stainless steel housing with electronic output: -40∞ to $+70 \infty \mathrm{C}$ Ex version: $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ VITON
$\geq 0.7 \mathrm{~kg} / \mathrm{dm}^{3}$
$\leq 10000 \mathrm{~mm} 2 / \mathrm{s}$ (cSt) (see Derating diagrams)

Bi-colour Staus LED on outside of housing

[^0]
SPECIFICATION

Relay output version
«Standard» M odel

Housing material

Selection of High/low fail safe

Density programming
Output
Output rating

Electric connections
(w ire cross section)

Supply voltage

Consumption
Electrical protection
M echanical protection
Weight (threaded versions) Alu housing: $1.3 \mathrm{~kg}+1.2 \mathrm{~kg} / \mathrm{m}$

Remote switching unit
Model

Input
Max. serial inductivity
Max. parallel capacitance
High/low mode selection
Output
Output rating

Supply voltage/
consumption
Sensor voltage
Electrical protection
Ex protection mark
Ambient temperature
Mounting

Housing material
Enclosure
Weight

Plastic housing: $0.95+1.2 \mathrm{~kg} / \mathrm{m}$
R $\square \square-4 \square \square$ - $\mathbf{0}$
R $\square \square$ - $5 \square \square$ - A
Paint coated Aluminium
(RF-400) or plastic (RF-500)

By switch
By switch
Up to 2 SPDT relay
Relay 1: $250 \mathrm{~V} \mathrm{AC}$,8 A, AC1
Relay 2: 250 V AC, $6 \mathrm{~A}, \mathrm{AC} 1$
$2 \times \operatorname{Pg} 16$ for $\varnothing 8$ to 15 mm cables (0.75 to 2.5 mm 2)
20 to 255 V AC and 20 to 60 V DC

AC: 1,2 ... 17 VA ;DC: < 3W
Class I.
IP 67 (NEMA 6)

(for Ex forks)

JDT-131-Ex
$9 \pm 1 \mathrm{~mA}$ to $14 \pm 1 \mathrm{~mA}$
5 mH
$0.04 \mu \mathrm{~F}$
by switch
SPDT relay
AC: 100 VA (250 V or 5 A);
DC: 100 W (24 V or 5 A)

24 V DC $\pm 10 \%$; max. 100 mA
16 to 26 V DC
Class III.
[EEx ia] IIC
$0^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$
NS 15, 35/75, 35/15,
32 DIN rail
PA
IP 30
0,1kg

Vibration fork level switches type INOVING R-400 / R-500

«MINI» Models»

2-wire AC

Electric connections (w ire cross section)
Mecanical protection
Selection of HIGH/LOW
fail safe mode
Density programming

Output

Supply voltage
Consumption
Voltage drop
(sw itched-on state)
Electrical protection
Current load
max. continuos
min. continuos
max. impulse
Residual current
(switched-off state)
Function test
Weight (threaded version)
2-w ire AC

Electric connections
(w ire cross section)
Mecanical protection
Selection of HIGH/LOW
fail safe mode
Density programming
Output

Supply voltage
Consumption
Voltage drop
(switched-on state)
Electrical protection
Current load
max. continuos
min. continuos
max. impulse
Residual current
(switched-off state)
Function test
Weight (threaded version)

$$
\mathbf{R} \square \square \mathbf{- 4} \square \square \mathbf{- 1}
$$

Connector
IP65

Within the connector Liquids fixed to $\rho \geq 0,7 \mathrm{~kg} / \mathrm{dm}^{3}$ Solids fixed to $\rho \geq 0,5 \mathrm{~kg} / \mathrm{dm}^{3}$ 2 -w ire AC, in serial connection with the load
20... 255 V AC, $50 / 60 \mathrm{~Hz}$

Depending on load
< 10,5 V
Class I.
$350 \mathrm{~mA} \mathrm{AC13}$
$10 \mathrm{~mA} / 255 \mathrm{~V}$ AC, $25 \mathrm{~mA} / 24 \mathrm{~V}$ AC $1,5 \mathrm{~A} / 40 \mathrm{~ms}$

< 6 mA

Optional test magnet
(Order code: RPS-101)
$0,5 \mathrm{~kg}+0,1 \mathrm{~kg} / 100 \mathrm{~mm}$
$\mathbf{R} \square \square \mathbf{- 4} \square \square \mathbf{- 2}$
integral cable
$\left(4 \times 0,75 \mathrm{~mm}^{2}\right)$
IP68

With wiring
Liquids fixed to $\rho \geq 0,7 \mathrm{~kg} / \mathrm{dm}^{3}$
Solids fixed to $\rho \geq 0,5 \mathrm{~kg} / \mathrm{dm}^{3}$
2-wire AC, in serial connection
with the load
20... 255V AC, $50 / 60 \mathrm{~Hz}$

Depending on load
< 10,5 V
Class I.
$350 \mathrm{~mA} \mathrm{AC13}$
$10 \mathrm{~mA} / 255 \mathrm{~V}$ AC, $25 \mathrm{~mA} / 24 \mathrm{~V}$ AC 1,5 A / 40 ms
<6mA
Optional test magnet
(Order code: RPS-101)
$0,5 \mathrm{~kg}+0,1 \mathrm{~kg} / 100 \mathrm{~mm}$

3-w ire DC PNP/NPN transistor output

	R $\square \square$-4 $\square \square$ - $\mathbf{3}$
Electric connections	
(w ire cross section)	Connector
Mecanical protection	IP65
Selection of HIGH/LOW fail safe mode	By switch
Density programming	By switch
Output	PNP/NPN transistor; field selectable
Output protection	Reverse polarity, over current and overload protection
Supply voltage	12... 55V DC
Consumption	0,6 W
Voltage drop	
(switched-on state)	< 4,5 V
Electrical protection	Class III.
Current load max. continuos	$350 \mathrm{~mA} / 55 \mathrm{~V}$ DC
Residual current	
(switched-off state)	< $100 \mu \mathrm{~A}$
Function test	Optional test magnet (Order code: RPS-101)
Weight (threaded version)	$0,5 \mathrm{~kg}+0,1 \mathrm{~kg} / 100 \mathrm{~mm}$

3-w ire DC PNP/NPN transistor output
R $\square \square-4 \square \square-4$
Electric connections
(wire cross section)
Mecanical protection
Integral cable
($5 \times 0,5 \mathrm{~mm}^{2}$)
IP68
Selection of HIGH/LOW
fail safe mode With wiring
Density programming
Output
Output protection

Supply voltage
Consumption
With wiring
Galvanicly isolated PNP/NPN transistor; field selectable Reverse polarity, over current and overload protection
12... 55V DC

0,6 W
Voltage drop
(switched-on state) <4,5 V
Electrical protection Class III.
Current load
max. continuos $350 \mathrm{~mA} / 55 \mathrm{~V}$ DC
Residual current
(switched-off state) $<100 \mu \mathrm{~A}$
Function test
Optional test magnet
(Order code: RPS-101)
Weight (threaded version) $\quad 0,5 \mathrm{~kg}+0,1 \mathrm{~kg} / 100 \mathrm{~mm}$

Vibration fork level switches type INOVING R-400 / R-500

«MINI» Models»

2-w ire Ex

Electric connections
(wire cross section)
M ecanical protection
Selection of HIGH/LOW
fail safe mode

Sensitivity programming
Output Type
Data
Supply voltage
Consumption
Electrical protection
Ex rating
Intrinsically safe data
Weight (threaded version)

2-w ire Ex

Electric connections
(wire cross section)
Mecanical protection
Selection of HIGH/LOW
fail safe mode
Sensitivity programming
Output Type
Data

Supply voltage
Consumption
Electrical protection
Ex rating
Intrinsically safe data

Weight (threaded version)
$\mathbf{R} \square \square \mathbf{- 4} \square \square \mathbf{- 8}$
Connector
IP65

By switch on the Inoving JDT-131-Ex
With wiring
2-wire DC
When free: $9 \pm 1 \mathrm{~mA}$;
when immersed; $14 \pm 1 \mathrm{~mA}$
Powered by Inoving JDT-131-Ex
$<0,5 \mathrm{~W}$
Class III. intrinsically safe
EEx ia IIC T4...T6
$\mathrm{U}_{\text {max }} 26,5 \mathrm{~V}$ DC, $\mathrm{I}_{\text {max }} 100 \mathrm{~mA}$,
$\mathrm{P}_{\text {max }} 1,4 \mathrm{~W}, \mathrm{LEQ}=0$; Ceq.max $=7 \eta \mathrm{~F}$
$0,5 \mathrm{~kg}+0,1 \mathrm{~kg} / 100 \mathrm{~mm}$
$\mathbf{R} \square \square \mathbf{- 4} \square \square \mathbf{- 9}$
Integral shielded cable
($2 \times 0,5 \mathrm{~mm}^{2}$)
IP68

By switch on the Inoving JDT-131-Ex
With wiring
2-wire DC
When free: $9 \pm 1 \mathrm{~mA}$;
when immersed; $14 \pm 1 \mathrm{~mA}$
Powered by Inoving JDT-131-Ex
$<0,5 \mathrm{~W}$
Class III. intrinsically safe
EEx ia IIC T4...T6
$\mathrm{U}_{\text {max }} 26,5 \mathrm{~V}$ DC, $\mathrm{I}_{\text {max }} 100 \mathrm{~mA}$,
$P_{\text {max }} 1,4 \mathrm{~W}, L E Q=0 ;$ Ceq.max $=7 \eta F$
$0,5 \mathrm{~kg}+0,1 \mathrm{~kg} / 100 \mathrm{~mm}$

2-wire DC

Electric connections
(w ire cross section)
M ecanical protection
Selection of HIGH/LOW
fail safe mode
Sensitivity programming
Output Type
Data

Supply voltage
Consumption
Electrical protection
Weight (threaded version)

Connector
IP65
$\mathbf{R} \square \square$ - $4 \square \square$ - 6

At the signal processing end With wiring
2-wire DC
When free: $9 \pm 1 \mathrm{~mA}$; when immersed; $14 \pm 1 \mathrm{~mA}$
15 to 27V DC
<0,5 W
Class III.
$0,5 \mathrm{~kg}+0,1 \mathrm{~kg} / 100 \mathrm{~mm}$

2-wire DC

Electric connections
(w ire cross section)

$\mathbf{R} \square \square \mathbf{- 4} \square \square \mathbf{- 7}$

Integral cable
($2 \times 0,5 \mathrm{~mm}^{2}$)
Mecanical protection
IP68
Selection of HIGH/LOW
fail safe mode
Sensitivity programming
Output Type
Data

Supply voltage
Consumption
Electrical protection
At the signal processing end With wiring
2-wire DC
When free: $9 \pm 1 \mathrm{~mA}$;
when immersed; $14 \pm 1 \mathrm{~mA}$
15 to 27 V DC
<0,5 W
Class III.
Weight (threaded version) $\quad 0,5 \mathrm{~kg}+0,1 \mathrm{~kg} / 100 \mathrm{~mm}$

TYPE CODE KEY

INOVING «STANDARD» models in Alu-cast / plastic housing:

INOVING «M IN।» models in stainless steel tube housing:

		INOVING R					
				,			
Fork	Code	Connections	Code	Length	Code	Output	Code
ECTFE coated	A	1" BSP thread	M	Short (69mm)**	00	2-w ire AC with connector	1
Standard	C	1" NPT thread	P	Standard (125mm)	01	2-w ire AC with cable	2
Highly polished	G	DIN DN 50PN40 st.st.flange**	G	0,2 to 3m	02..30	2-wire NPN with connector	3
		2" ANSI st. st. flange**	B			2-w ire NPN with cable	4
		50A JIS st. st. flange**	K			2-w ire DC with connector	6
		DIN DN50PN16 PP flange**	F			2-w ire DC with cable	7
		2" ANSI PP flange**	A			2-wire Ex with connector	8
		50A JIS PP flange**	J			2-wire Ex with cable	9
		11/2" Triclamp (ISO2852)	T				
		2" Triclamp (ISO2852)	R	* The short	ersion	are not applicable for so	
		DN40 Pipe coupling (DIN11851)	D	** Flanges ver	sions	standard come with fla	
		DN50 Pipe coupling (DIN11851)	E	screwed on	the 1	process connection.	

[^0]: * Please note, that temperature difference betw een inner and outer surface of ECTFE coated flanges must not exceed $60^{\circ} \mathrm{C}$. If necessary, insulate outer surface of flange.

